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Abstract. We show that each formal power series in noncommuting variables may be obtained 
by an infinite linear system as those considered by Kuich and Urbanek (1983). 

In a recent paper, Kuich and Urbanek [2] have introduced infinite linear systems 
of noncommutative formal power series. The aim of the present note is to show 
that each formal power series may be obtained by such a system. As a consequence, 
the closure properties given in [2] become straightforward. 

We follow the notations and definitions of [2] and [3]. Let A be a semi-ring and 
Z be an alphabet. An infinite matrix is called row-Ji&e (resp. cohmn-finite) if in 
each of its rows (resp., columns), there are only a finite number of nonzero 
coefficients. An infinite linear system is defined to be of the form 

Y=P+MY, (1) 

where Y is an N by 1 column vector of variables, P an N by 1 column-finite column 
vector with coefficients in A((Z*)), and M an lV b$ N row- and column-finite matrix 
with coefficients in A((Z*)). The system is called cycle-free if, setting A4 = MO + Ml 

with MO = (M, A)h (where h denotes the empty word), the matrix MO is nilpotent 
and Ml is quasi-regular. By [2, Theorem 1] each cycle-free infinit; linear system 
has a unique solution. , 

We show that each formal power series may be obtained as the Grst component 
of such a system. For this, let SE ({X*)) any formal power series. We adopt, as in 
[1], the language of A-X-automata, rather than systems. Let C be a disjoint copy 
of C: the natural bijection 

0304-3975/84/$3.()0 @ 1984, Elsevier Science Publishers B.V. tNorth-Holland) 



340 G. Jacob, C. Reutenauer 

will be denoted by 

w-, w. 

We define an automaton with Q = C* u C* as set of states. The initial state is A, 
with label 1; there are two final states, A with label (S, A) and A with label 1. For 
any word w in C* and any letter u in 2, there are two edges with label O= and 
multiplicity 1, 

w+w(7 arid aw+ w. 

For any words TV and u in C* such that 

lul-=lul or lul=lul+l, 

and for any letter o in C such that (S, uau) f 0 there is an edge labelled v with 
multiplicity (S, mu), 

u + v. 

Note that this automaton is locally-finite, that is, for each state, there are only a 
finite number of edges going in it (respectively going out of it). Furthermore, there 
are only a finite number (namely, 2) of final states. This implies that the associated 
system sal;isfies the row- and column-finiteness conditions. This system is cycle-free 
because there are no A-transitions in the automaton. Now, it is easy to verify that 
for eat 1’1 nonempty word w in 6* there is only one succesful path with label w, 
and iI has multiplicity (S, w). Furihermore, the only successful path with label A 
has multiplicity (S, A ). This shows that the series recognized by this automaton 
(hence the series which is the first component of the solution of the associated 
system) is S. 
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